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SPATIAL ANALYSIS OF NDVI READINGS

WITH DIFFERENT SAMPLING DENSITIES

H. Zhang,  Y. Lan,  R. Lacey,  W. C. Hoffmann,  J. K. Westbrook

ABSTRACT. Advanced remote sensing technologies provide researchers an innovative way to collect spatial data in precision
agriculture. Sensor information and spatial analysis together allow for a detailed understanding of the spatial complexity
of a field and its crop. The objective of the study was to describe field variability in the normalized difference vegetation index
(NDVI) and characterize the spatial structure of NDVI data by geostatistical variogram analysis. Data sets at three different
sampling densities were investigated and compared to characterize NDVI variation within the specified study area.
Variograms were computed by Matheron's method of moments (MoM) estimator and fitted by theoretical models. The fitted
spherical model was determined to be the best model for the data analysis in the study. The range of spatial dependence of
the NDVI data was 40 m for a sampling area of 4 m × 3 m. Knowing the amount of remotely sensed data needed to characterize
the spatial variation of the field with NDVI allows us to save sampling costs and prescribe site‐specific nitrogen and other
agrichemical applications.
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dvanced remote sensing technologies provide re‐
searchers an innovative way to collect spatial data
in precision agriculture. Many commercially
available sensors or optical instruments provide

the capability of acquiring real‐time spectral information
from vegetation. Studies have suggested that crop spectral re‐
flectance can be used to assess plant nutrient and pigment sta‐
tus (Goel et al., 2003a; Osborne et al., 2002), monitor plant
conditions at various scales (Blackmer et al., 1994; Plant,
2001), and crop biophysical variables (Thenkabail et al.,
2000; Goel et al., 2003b).

Canopy spectral reflectance properties based on the ab‐
sorption of light at a specific wavelength are associated with
specific plant characteristics. The spectral reflectance in the
visible wavelengths (400‐700 nm) is low because of the high
absorption of light energy by chlorophyll. The reflectance in
the near‐infrared (NIR) wavelengths (700‐1300 nm) is high
because of the multiple scattering of light by different leaf tis‐
sues (Taiz and Zeiger, 2006). Vegetation indices have been
developed with the reflectance data from red and NIR wave‐
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lengths and are often used to monitor crop growth conditions.
The normalized difference vegetation index (NDVI) is a
good indicator of vegetation, crop biomass, and health in
agricultural  applications (Rouse et al., 1973; Tucker, 1979).
NDVI is calculated as: NDVI = (NIR ‐ Red) / (NIR + Red),
where Red and NIR stand for the spectral reflectance mea‐
surements acquired in the red and near‐infrared regions, re‐
spectively. Healthier crop canopies will absorb more red and
reflect more near‐infrared light than stressed or unhealthy
canopies, and consequently have a higher NDVI value. Sem‐
biring et al. (1998) found that NDVI was a good indicator of
nitrogen (N) uptake of winter wheat. Freeman et al. (2007)
collected NDVI with Greenseeker (NTech Industries, Inc.,
Ukiah, Cal.) handheld sensors and plant height measure‐
ments on individual corn plants at various growth stages and
related them to individual plant biomass, forage yield, and N
uptake. Bronson et al. (2005) used NDVI collected from dif‐
ferent sensors to give a better estimation of in‐season plant N
status.

Remotely sensed data and spatial analysis together allow
for a detailed understanding of the spatial complexity of a
field and its crop. Determination of the spatial variability of
field parameters is usually based on the concept that sampled
values at nearby locations are more similar than those farther
apart. Measurements from the field are usually gathered as
point data, such as samples from an individual plant. Spatial
analysis methods can be used to interpolate measurements to
create a continuous surface map or to describe its spatial pat‐
tern (Cressie, 1993). As a powerful tool in geostatistics, va‐
riograms (also referred to as semivariograms) characterize
the spatial dependence of data and give the range of spatial
correlation,  within which the values are correlated with each
other and beyond which they become independent. The pa‐
rameters of the best fitted model for a variogram can be used
for kriging (Matheron, 1963; Stein and Corsten, 1991). Krig‐
ing has been recommended as the best method to interpolate
point data since it minimizes the error variance using a
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weighted linear combination of the data (Panagopoulos et al.,
2006). There are also numerous studies demonstrating the
benefits of geostatistical analysis techniques to agricultural
management.  Heisel et al. (1996) used kriging to map the
density of weeds in winter wheat. Stewart et al. (2002) used
geostatistical methods to interpolate data and produce maps
of a field representing the spatial variability of all the soil and
wheat properties. With the aid of these maps and empirical
modeling techniques, relationships between the wheat and
soil factors were determined. Yamagishi et al. (2003) investi‐
gated the spatial variability of crop biomass and determined
if site‐specific management could be applied to a small field
by using a variogram.

The large amount of remotely sensed data also could in‐
crease the sampling costs, provide redundant information,
and require complicated data analysis techniques. The issue
has drawn considerable attention to specify the sampling re‐
quirements needed to accurately analyze the spatial property
of an object. The objectives of this study were to describe the
variability of a soybean field in NDVI, characterize the spa‐
tial structure of NDVI with different sampling data sets using
variogram analysis, and determine an optimum sampling size
that could adequately describe the field variation in canopy
NDVI for future studies.

MATERIALS AND METHODS
STUDY SITE

The study site consisted of a 15 m × 65 m area within an
approximately  1 ha soybean field near College Station, Texas
(30.37055° N, 96.21610° W). The soybeans (variety HBK
C5025, Hornbeck Seed Co., Dewitt, Ark.) were planted on
31�March 2008 with a row spacing of 1 m and with the rows
oriented in the east‐west direction. Nitrogen was applied as
ammonium sulfate (336 kg ha‐1) broadcast prior to planting
and incorporated into the beds. The field was irrigated week‐
ly as needed during the pod fill period.

SAMPLING DESIGN AND DATA COLLECTION

At the end of June 2008, the plants on the north side of plot
reached senescence, while the other plants were growing vig‐
orously. To assess the spatial variation of soybean plants
within this area, spectral reflectance measurements were
conducted along four selected transects with a FieldSpec
handheld hyperspectroradiometer (Analytical Spectral De‐
vices, Inc., Boulder, Colo.). The distance between selected
transects was 3 m. The sampling position along each transect
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Figure 1. Locations of sampling points in the study area.

was marked by a 2 m interval, and the spatial coordinates
were recorded using a GPS receiver (2 m × 3 m sampling
area). Each transect comprised 32 sampling points for a total
of 128 observations (fig. 1).

The FieldSpec handheld hyperspectroradiometer was
positioned with a nadir view from a height of about 2 m above
the ground. With an angular field of view of 25°, it scanned
approximately 0.62 m2 of field area. The spectroradiometer
collected data from the canopy in a wavelength range from
325�nm to 1075 nm with a sampling interval of 1.6 nm. The
spectroradiometer  output 512 continuous data points with
each reading. A sunny day was chosen for the field test, and
all data were collected around solar noon. Instrument opti‐
mization and white reference measurements were performed
prior to sample measurements using RS3 software (Analyti‐
cal Spectral Devices, Inc., Boulder, Colo.). The spectrora‐
diometer was adjusted to ten scans per dark current, and the
integration time was set at 217 ms. All reflectance measure‐
ments taken from each transect were completed within half
an hour. The reflectance values at 680 nm in the red region
and at 800 nm in the NIR region were chosen to calculate
NDVI (Castro‐Esau et al., 2006).

STATISTICAL ANALYSIS

Descriptive statistics for NDVI values were calculated
and the outliers and anomalies were examined using R (ver.
2.8.0, The R Foundation for Statistical Computing, Vienna,
Austria). Autocorrelation analysis was applied to each trans‐
ect. The spatial structure of the NDVI readings was deter‐
mined using geostatistical techniques and variogram
analysis.

Variograms
Variograms were computed for three data sets with differ‐

ent sampling densities. The first data set was all NDVI data
at a 2 m sampling interval (2 m × 3 m sampling area), the sec‐
ond data set was reduced to sampling points at a 4 m interval
(4 m × 3 m sampling area), and the third data set was reduced
to sampling points at a 6 m interval (6 m × 3 m sampling
area). This resulted in 128, 64, and 40 measurements being
used for the 2, 4, and 6 m spatial analyses, respectively. The
procedures for detecting trend and anisotropy were per‐
formed.

The experimental variograms were computed using Ma‐
theron's method of moments (MoM) estimator (Matheron,
1965). The estimator is given by the following equation:
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where �(h) is an unbiased estimate of the variance of the m(h)
pairs of NDVI readings; m(h) is the number of sampling pairs
separated by a lag h for i = 1, 2, ..., m(h); and z(xi) and z(xi +
h) are the NDVI values at locations xi and (xi + h), respective‐
ly.

Theoretical Models
The experimental variograms were fitted (based on a

weighted least squares approximation) with theoretical mod‐
els that provided three key parameters: the nugget variance,
the sill variance, and the range of spatial dependence. These
model parameters described the spatial structure of the NDVI
readings. The sample sizes of 128 and 64 in this study satis‐
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fied the requirement of acquiring reliable estimation of a va‐
riogram by MoM (Webster and Oliver 1992; Kerry and
Oliver 2007). Therefore, the spherical and exponential mod‐
els were fitted to the variograms computed from the 2 m inter‐
val and 4 m interval data sets. For the 6 m interval data set,
the variogram was estimated by the maximum likelihood
(ML) approach and compared to those estimated by MoM
(Lark, 2000). On the basis of the least sum of squares or
Akaike information criterion (AIC; Akaike, 1973), a good fit
model was chosen. Given a data set, several models may be
ordered according to their AIC. The one with the lowest AIC
would be the best. The parameters of the model were used for
kriging, which is a method of interpolation to predict un‐
known values from data observed at known locations.

The spherical model is one of the most commonly used
models for experimental data (Webster and Oliver, 2007) and
is expressed as:
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where c0 is the nugget variance, c is the sill, h is the lag, and
a is the range.

The exponential model has been used commonly because
of its generality. In the isotropic case, it is given by the fol‐
lowing equation:
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The non‐linear parameter r defines the spatial scale of the
variation. The sill is approached asymptotically. For practical
purposes, a = 3r is regarded as the effective range of the expo‐
nential model, which is the lag at which the sill reaches
approximately  c0 + 0.95c (Webster and Oliver, 2007).

In all, the procedure for modeling a variogram involves
both visual inspection and statistical fitting: first plot the va‐
riogram, then choose one or more models with the right shape
to represent the major trends in the data, next fit each model
in turn by weighted least squares, and finally inspect the re‐
sult by plotting the fitted models on the variogram. Among
the plausible models, the one with smallest mean square or
smallest residual sum of square will be chosen. A smaller
nugget (error) and lower nugget‐to‐sill ratio would also be
considered.

The variogram analyses, experimental variogram com‐
puting, model fitting, and kriging were performed with the
geoR package in R software.

RESULTS AND DISCUSSION
DESCRIPTIVE STATISTICS

The NDVI data for the four transects are plotted in fig‐
ure�2. The NDVI tendency of each transect was different. The
lowest NDVI value was found in transect 2, where the plants
were senescent and very dry. The descriptive statistics of the
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Figure 2. NDVI data for the four transects.

NDVI data at the three sampling intervals were calculated
(table 1). The means, medians, and standard deviations of the
three data sets were similar. Student t‐tests were performed
for the three data sets, and there was no significant difference
among means. In other words, the decrease in the sampling
density did not affect the properties of the NDVI data. No
transformation of the data was necessary for geostatistical
analysis.

GEOSTATISTICAL ANALYSIS
The existence of anisotropy was assessed first. Anisotropy

was tested in four directions (0°, 45°, 90°, and 135°). The di‐
rection of the maximum continuity was found along the trans‐
ects, and the direction of the minimum continuity was
perpendicular  to the transects, as there were more data points
along a transect than perpendicular to a transect. The calcula‐
tion of semivariance was restricted to the direction of the
transects only. The NDVI variograms computed for the 2 m
interval, 4 m interval, and 6 m interval data sets are shown in
figure 3. The shapes of the variograms were a little wavelike,
which indicated the periodicity since the distance of the
transects remained constant. There were no evident differ‐
ences in shape and semivariance magnitude among sample
densities. The variability increased while the lag distance in‐
creased until about 50 m.

Exponential and spherical models were fitted to the vario‐
gram computed for the 2 m interval and 4 m interval data sets
(figs. 4 and 5). Figure 6 indicates that the variogram com‐
puted for the 6 m interval data set was fitted with exponential
and spherical models estimated by weighted least squares
and maximum likelihood.

The variogram parameters are summarized in table 2. For
the 2 m interval data set, the sum of squares of the exponential
model and spherical model were the same, but the exponen-

Table 1. Descriptive statistics of NDVI
for the three data sets in the study area.

Parameter

Data Set

2 m 4 m 6 m

Mean 0.3850 0.3810 0.3780
Median 0.3721 0.3876 0.3653

SD 0.1601 0.1640 0.1589
Skewness ‐0.0198 ‐0.19 ‐0.097
CV (%) 41.59 43.08 42.04
Count 128 64 44
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Figure 3. Variograms of three NDVI data sets in the study field for 2 m,
4 m, and 6 m intervals.
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Figure 4. Variogram of NDVI data set (2 m interval) in the study field: ex‐
perimental variogram calculated by method of moments estimator
(circles), and exponential (solid line) and spherical (dashed line) models
fitted by weighted least squares.

tial model had a smaller nugget and nugget‐to‐sill ratio. For
the 4 m interval data set, both the exponential and spherical
models had zero nuggets. The sum of squares of the spherical
model was smaller than that of the exponential model. More‐
over, the range of the exponential model was larger than the
length of the transect. The range of the spherical model was
40 m, beyond which the NDVI became independent. Al‐
though maximum likelihood is suggested for calculation of
a variogram when the data size is less than 50, both models
fitted for the 6 m interval data set had high nugget‐to‐sill ra‐
tios in this case. Also from figure 6, the maximum likelihood
models were far away from the variogram and could not give
a better fit or more information than the other two models es‐
timated using MoM. Overall, the spherical model for the 4 m
interval dataset had a range of 40 m, zero nugget and nugget‐
to‐sill ratio, the smallest sum of squares, and good fit with
visual inspection (fig. 5). The parameters of the spherical
model for the 4 m interval data set were used for kriging and
predicting NDVI values at unsampled locations.

With 64 known sampling points and the parameters of the
chosen model, kriging was performed to produce the NDVI
data map of the study area (fig. 7). This map describes the
spatial variation of NDVI within the study field in a better
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Figure 5. Variogram of NDVI data set (4 m interval) in the study field: ex‐
perimental variogram calculated by method of moments estimator
(circles), and exponential (solid line) and spherical (dashed line) models
fitted by weighted least squares.
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Figure 6. Variogram of NDVI data set (6 m interval) in the study field: ex‐
perimental variogram calculated by method of moments estimator
(circles), exponential (solid line) and spherical (dashed line) models fitted
by weighted least squares, and exponential (dotted line) and spherical
(dot‐dash line) models fitted by maximum likelihood.

way, adds more information, and provides better understand‐
ing than classical descriptive statistics analysis. Within the
15�m × 65 m area, the NDVI values were very low on the
northwest side, where the soybean plants were yellow, dry,
and had stopped growing. The variability perpendicular to
the transects was large.

CONCLUSIONS
This study revealed that the remotely sensed normalized

difference vegetation index (NDVI) was suitable to describe
crop ground cover and crop growing status. The NDVI data,
analyzed by a geostatistical method, variogram, and kriging,



353Vol. 54(1): 349-354

Table 2. Parameters of the exponential and spherical models fitted to the experimental variogram estimated by method of moments
(MoM) (n = 128) and maximum likelihood (ML; n = 64) that describe the spatial structure of NDVI in the study field.

Interval Model Range (m) Nugget Sill Nugget %[a] Sum of Squares AIC

2 m Exponential 209 0.0003 0.0728 0.4 0.0108
Spherical 60 0.0005 0.0379 1.3 0.0108

4 m Exponential 119 0 0.0522 0 0.0061
Spherical 40 0 0.0319 0 0.0036

6 m Exponential 89 0 0.0413 0 0.0047
Spherical 50 0.0011 0.0434 25.34 0.0051

ML/exponential 0.15 0.018 0.0247 72.87 ‐30.01
ML/spherical 2.5 0.0147 0.0247 59.51 ‐30

[a] Percentage nugget is calculated as Nugget/Sill × 100.
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Figure 7. NDVI map of the study field.

gave a good description of the spatial variation within the
field. In the study, the spatial dependence of the NDVI data
was 40 m with a sampling area of 4 m × 3 m. Although it is
possible to increase the sampling interval to 6 m without lost
spatial information, the parameters of the fitted model are not
accurate enough for kriging. Compared to a sampling inter‐
val of 2 m, the use of the 4 m interval data set reduces the
processing of redundant data without affecting the quality of
the variation described. Knowing the amount of remotely
sensed data needed to characterize the spatial variation of the
field with NDVI allows us to save sampling costs and pre‐
scribe nitrogen and other agrichemical applications.

The study only considered three sampling densities for
this field. The distance between transects was consistent. Dif‐
ferent sampling area and spatial structure of other remotely
sensed data may be examined in a future study.
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